Tag Archives: Guangxi Institute of Botany

Lost world discovered in twilight of Chinese caves

Elatostema obscurinervium growing in stalagmite drip zones, one of 31 species known only from caves in China and Vietnam.

I never expected to be working in caves, that is, until I started to study nettles in Southwest China with Guangxi botanist Wei Yi-Gang. When Wei suggested that we collect in a local cave I was not hopeful. However, that first visit transported me to another world, an eerie moonscape in which plants thrived in powdery ‘soil’ and perpetual twilight. I was immediately gripped and determined to explore as many caves as possible. Over the next few years we visited over 60 caves, travelling on underground rivers, hiking across rice fields or sneaking into big tourist caves. Each time I got the same thrill from entering these strange and silent places. This has culminated in a paper just published in the scientific journal PLOS ONE.

cave 7-2
Yangtse cave, Fengshan County, Guangxi. Eight species new to science have been described from here.

There has been very little research on plants in caves. Having come across such a widespread and diverse flora we wanted to make sure that both botanists and cave biologists were aware of it. This is because plants growing in caves could tell us a lot about how plants adapt to extreme conditions. Also, as to how connected caves are to the surrounding landscape and each other. To do so we set out to answer a series of questions. Probably the most obvious was, are plants growing in light levels distinct to those outside? Did the species evolve in caves? Or are they survivors of a previous vegetation that at some time connected caves? And, are these plants important for conservation in the region? For example, in the restoration of the karst forests lost during the 20thC.

Cave converted to a tourist attraction.

There are thousands of caves in Southwest China and the landscape that they helped form has long been famous in Chinese culture and art. A landscape covered in dense forest until the 20thC at which time the ‘Great leap forward’ and later the ‘Cultural revolution’ resulted in massive deforestation. Once cut, the forest has not returned but instead been replaced dry scrub. The 21stC has brought new threats from cement and tourism. The rock that forms these caves is used to make cement, now in high demand, that combined with a rapid growth in tourism has meant once untouched ‘lost worlds’ are being mined or filled with walkways, bright lights and litter.

Collaborators from the Guangxi Institute of Botany, Fu Longfei and Chen Xiaoqin taking photosynthesis measurements.

We found that some of the plants growing in caves are surviving in very low levels of light. Levels much lower than previously known. From other cave studies we also know that daily changes in temperature and humidity are very small. There is also some suggestion from other studies that the cave atmosphere may be richer in CO2. It could be that low levels of light are being offset by more stable conditions and higher CO2 – an interesting question for future research.

We also found that whilst most of the plants we document are known from forest habitats elsewhere, 31 species are only known from caves. For reasons given in our paper we do not believe that this means that they evolved in caves but rather that they are species which were restricted to the forests lost in the 20thC.

So, it looks as if the plants that we are finding in caves are relics of forests that were lost to deforestation in the 1950s and 1970s. With a current focus on restoring these lost forests in China, these surviving populations could now become a valuable source of local plant material for restoration.

DSC_0036 (2)
Yin Jia cave close to Gu Lin village in Yunnan. At 1600 m above sea-level this is also one of highest elevations that we have collected in caves.

Other posts by me on this topic

2016: Studying cave-plants in SW China

2014: Caves explored last month



Studying cave plants in SW China

Yangtse cave, Fengshan County, Guangxi, type locality for eight species of plant. The plant-bearing part of the cave is ca 170 m deep and 70 m wide (note the person for scale)

As part of my research on the nettle family, Urticaceae I became aware of plants growing in the entrance caverns of caves several years ago and for over a year now my collaborators at the Guangxi Institute of Botany, China lead by Professor Yigang Wei and I have been working on documenting the full diversity of this unusual flora. This lead us to think about whether these plants may have become adapted to life in caves, in particular the relatively constant climate and low light. Especially for species which grow amongst the lowest light levels at the back of caverns where they are growing in a fraction of the light they could be expected to receive in a forest. We therefore applied for a grant from the Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, and the Foreign Experts Bureau to undertake some preliminary work to document the climate, light and photosynthesis of the plants in the caves.

Fu Longfei and Chen Xiaoqin taking photosynthesis measurements using an instrument called a handheld PAM which uses fluorescence to measure various aspects of photosynthesis.

We selected the Yangtse cave as we know the diversity of plants that grow there (ten species of nettle alone), we have three data-loggers recording temperature and humidity in it and it is close to a town where we can spend the night. It is also a spectacular and beautiful place to spend several days working. The aim of our work was to collect the data necessary to test the hypothesis that the plants growing within the entrance cavern of the Yangtse cave exhibit different photosynthetic performance than the same or congeneric species growing outside of the cave. To do this we randomly selected individuals of three species of nettle in the genus Elatostema, one species of Begonia and a species of fern at four different locations in the cave, the back, midway into the entrance cavern, at the entrance and outside of the cave. We also brought two species of Elatostema from the living collection at the Guangxi Institute of Botany to compare their photosynthesis performance with members of the same species that had grown up within the cave. This was to get some indication as to how plastic their response was.

Elatostema obscurinervium, one of 31 species known only from caves and recently collected from a cave in northern Vietnam.

Each plant was connected to a hand-held PAM chlorophyll fluorometer, an incredibly sensitive device that can measure several key outputs of photosynthetic reactions in the chloroplasts as they take place. By comparing our study plants to those growing outside of the cave and from the scientific literature we hope to see whether cave-dwelling plants differ from non-cave plants in some of those parameters, and whether those differences are dependent upon what kind of plant they are. These parameters include the efficiency of photosynthesis, that is how much of the light energy is harnessed by the photosynthetic reactions, how much is dissipated and how resilient the photosynthetic apparatus is to changing light intensity. If we find  a difference between cave and non-cave dwelling plants then taken together these measurements can provide some indication of which group of photosynthetic reactions are leading to these differences.